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Abstract— This paper presents an Open-Vocabulary Online
3D semantic mapping pipeline, that we denote by its acronym
OVO. Given a sequence of posed RGB-D frames, we detect
and track 3D segments, which we describe using CLIP vectors.
These are computed from the viewpoints where they are
observed by a novel CLIP merging method. Notably, our OVO
has a significantly lower computational and memory footprint
than offline baselines, while also showing better segmentation
metrics than offline and online ones. Along with superior
segmentation performance, we also show experimental results
of our mapping contributions integrated with two different full
SLAM backbones (Gaussian-SLAM and ORB-SLAM2), being
the first ones using a neural network to merge CLIP descrip-
tors and demonstrating end-to-end open-vocabulary online 3D
mapping with loop closure.

I. INTRODUCTION

Semantic mapping targets the estimation of the category
to which each element in a scene belongs, along with a
consistent geometric representation. Rich semantic represen-
tations in 3D are essential for advanced robotic applications.
Traditionally, semantic 3D reconstruction has relied on a
closed-set approach in both offline [1, 2] and online [3, 4]
settings, including integrations into semantic Simultaneous
Localization and Mapping (SLAM) systems [5—7]. However,
these methods are constrained by a predefined set of cate-
gories, which limits their flexibility and applicability in open-
ended, real-world environments.

Following the emergence of Contrastive Language-Image
Pre-training (CLIP) [8], there has been a surge of interest
in open-vocabulary 3D representations [9-11], including
efforts in online mapping [12-14]—though not yet in full
SLAM systems. While these recent approaches have shown
strong performance, their dependence on offline processing
or ground-truth camera poses for mapping significantly limits
their applicability in robotics, augmented reality, and virtual
reality scenarios.

In this paper, we present OVO, an Open-Vocabulary
Online mapping algorithm, which we integrate into two
distinct visual SLAM pipelines. An example of our online re-
construction results is shown in Fig. 1. Our method processes
RGB-D keyframes to generate 3D segments, each associated
with a CLIP embedding. These segments are initialized
by back-projecting masks predicted by Segment Anything
Model (SAM) 2.1 [15], and are tracked over time by pro-
jecting them into 2D and matching against new masks. Each
3D segment’s CLIP descriptor is selected from the keyframe
views with the best visibility. Additionally, we introduce a
novel model to extract per-instance CLIP descriptors directly
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Fig. 1. OVO mapping. Given a RGB-D set of keyframes (top), our
method successively reconstructs a 3D open-vocabulary representation of a
scene over time (middle). At any moment, both semantic labels (bottom
left) as well as instance labels (bottom right) can be effectively recovered.

from images, which are then assigned to the corresponding
3D masks. Our CLIP merging employs a neural network that
learns per-dimension weighting to fuse CLIP descriptors of
the same instance, while effectively generalizing to unseen
classes and environments. Our pipeline not only operates
online and supports loop-closure optimization, but also out-
performs existing baselines in segmentation accuracy.

II. RELATED WORK

Our OVO estimates consistent 3D open-vocabulary seman-
tics and seamlessly integrates with SLAM pipelines. Unlike
previous methods that either use a closed set of categories,
offline processing, 2D semantic representations or odometry.
Tab. I provides a comparative summary of recent related
works based on these aspects, with further details discussed
in the remainder of this section.

Open-Vocabulary Image Semantics. The introduction of
Contrastive Language-Image Pretraining (CLIP) [8], which



encodes image and text tokens into a shared latent space,
revolutionized semantic segmentation. By computing sim-
ilarity to text inputs, CLIP enables classification into any
category expressible in language. Several variations of CLIP
have enhanced its performance [16, 17] and improved feature
granularity, aiming to generate dense feature vectors [18,
19] rather than per-image representations. While closed-
vocabulary methods outperform on predefined sets, open-
vocabulary offers optimization-free generalization, highly
relevant for diverse applications.

Offline 3D Open-Vocabulary from 3D point clouds. Most
open-vocabulary 3D semantic approaches assume a known
3D point cloud. OpenScene [9] leverages OpenSeg [20] to
compute CLIP features from images and trains a network
to associate 2D pixels with 3D points. For each 3D point
it performs average pooling on CLIP vectors from multiple
views and supervises an encoder to directly assign CLIP
features to 3D point clouds. OpenMask3D [10] selects k
views per object, crops its 2D SAM mask to compute a CLIP
features, and then features are average-pooled across crops
and views. Open3DIS [11] integrates SuperPoint [21] with
2D instance segmentations and a 3D instance segmentator
to generate multiple 3D instance proposals, describing each
with CLIP features following OpenMask3D [10]. In con-
trast, OpenYolo-3D [22] uses a 2D open-vocabulary object
detector instead of relying on 2D instance masks and CLIP
features. It classifies each object based on the most common
class across all views. While this approach eliminates the
need for CLIP feature extraction, it limits each scene to a
predefined set of classes.

Offline 3D Open-Vocabulary from RGB and RGB-D.
OpenNeRF [23] optimizes a NeRF to encode the scene repre-
sentation along with per-pixel CLIP features from OpenSeg.
The OpenSeg features are projected into 3D to compute
the mean and covariance of 3D points. The NeRF then
renders novel views, prioritizing areas with high covariance
to compute additional OpenSeg features and refine the model.
Hierarchical Open-Vocabulary 3D Scene Graphs (HOV-SG)
[24] relies on an offline hierarchical global fusion approach
that requires precomputing 3D segments and features for all
frames. These 3D segments and features are incrementally
fused by merging observations across consecutive frames.
The authors argue that relying solely on masked segments,
as in Concept-Graphs [13], discards crucial contextual in-
formation. To address this, they propose a descriptor that
merges in a handcrafted manner three CLIP embeddings per
mask: (1) the full image, (2) the masked segment without
background, and (3) the masked segment with background.
We adopt this strategy, and contribute by proposing a novel
approach to learn the CLIP merging operation.

Online Semantics. To date, online semantic methods have
focused mostly on closed vocabularies. SemanticFusion [3]
was one of the first semantic SLAM pipelines, predicting per-
pixel closed-set categories and fusing predictions from differ-
ent views in 3D space. Fusion++ [25] uses Mask-RCNN [26]
to initialize per-object Truncated Signed Distance Functions

TABLE I
OVERVIEW OF 3D SEMANTIC RECONSTRUCTION BASELINES.

Open 3D . Loop
Method Vocabulary semantics Online Closure
OpenScene [9] v v X -
OpenMask3D [10] v v X -
Open3DIS [11] v v X -
HOV-SG [24] v v X -
OpenNeRF [23] v v X -
NEDS-SLAM [31] X X v X
NIS-SLAM [30] X X v X
SGS-SLAM [7] X v v X
Kimera-VIO [4] X v v X

" “Concept-Fusion [12] ~ ~ ~ vV T T T T /T T T /T T T Tx T

Concept-Graphs [13] v v v X
Open-Fusion [14] v v v X
OVO (ours) v v v v

(TSDFs), building a persistent object-graph representation. In
contrast, PanopticFusion [27] combines predicted instances
and class labels (including background) to generate pixel-
wise panoptic predictions, which are then integrated into
a 3D mesh. More recent works, such as those by Menini
et al. [28] and ALSTER [29], jointly reconstruct geometry
and semantics in a SLAM framework. Additionally, NIS-
SLAM [30] trains a multi-resolution tetrahedron NeRF to
encode color, depth and semantics. NEDS-SLAM [31] is a
3DGS-based SLAM system with embedded semantic fea-
tures to learn an additional semantic representation of a
closed set of classes. Similarly, Hi-SLAM [32] and SGS-
SLAM [7] augment a 3DGS SLAM with semantic ids of
predefined set of classes. These approaches either assume
known 2D ground-truth closed set of semantic classes (and
therefore only tackle a multi-view fusion problem), or only
represent 2D semantics, with limited capabilities for 3D
segmentation or precise 3D object localization. More re-
cently, OpenFusion [14] and Concept-Graphs [13] integrated
open-vocabulary semantic descriptors into online 3D map-
ping pipelines. Concept-Graphs relies on the naive mask-
cropping to compute CLIP descriptors, while OpenFusion
uses SEEM [33] and creates a TSDF with 3D segments.
None of them, however, addresses the integration into a full
SLAM pipeline with loop closure optimization as we do.

III. OVO METHODOLOGY

OVO relies on a parallel-tracking-and-mapping architec-
ture, as first defined by Klein and Murray [34] and adopted
by most visual SLAM implementations [35]. Fig. 2 shows
an overview of OVO. It takes as input a stream of RGB-D
keyframes ({ko,...,k,} in the figure) and their respective
poses and local point clouds. From this 3D representation,
Sec. III-A, OVO extracts and tracks a set of 3D segments
covering the whole representation (3D segment mapper in the
figure, detailed in Sec. I1I-B). We compute a CLIP descriptor
per each segment’s viewpoint merging 3 different CLIPs
(CLIP merging in the figure, detailed in Sec. III-E). Then
assign to the 3D segment the most representative descriptor,
Sec. III-D. When the SLAM module performs a loop closure
or bundle-adjustment optimization, a routine searches for
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Fig. 2. Overview. From a stream of RGB-D keyframes, OVO builds, online,
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a 3D semantic representation of the scene. It relies on a 3D segment mapper

to cluster 3D points into 3D segments; a queue to distribute the CLIP extraction computation, and a novel CLIP merging method to aggregate CLIP

descriptors from multiple keyframes into one for each 3D segment.

repeated 3D segments, and fuses those that were not correctly
tracked, Sec. I11-C.

A. Map Definition

Its input is an RGB-D video V = {fo,...,fr}, fr €
NYxnx3 « R representing the RGB-D frame of size w x h
captured at time step 7. A SLAM front-end estimates in real-
time the pose 7, of every frame f, in the world reference
frame. The SLAM back-end selects a set of keyframes K =
{ko, ... kn} C V from which it iteratively refines their poses
T = {To,..., T}, T, € SE(3) asynchronously, at a rate
lower than the video rate of the tracking thread.

Our scene representation or ‘map’ M {T,P,S},
consists on these keyframe poses 7, a point cloud P =
{Po,...,Ppn} and a set of 3D segments S = {So, ..., 5},
being ¢ the identifier of the last added segment. Every
map point P = ([z y z]T, lp) is defined by its 3D
coordinates [z y z| € R® and a discrete label [, €
{-1,0,1,...,q}, I, > —1 indicating the 3D segment the
point belongs to, and /,, = —1 indicating that it is unassigned.
The dense point cloud P is built concatenating at each
keyframe k,, the estimated 3D points P, provided by the
SLAM front-end. If the SLAM front-end does not estimate
a dense point cloud, P,, is computed as the unprojection of
the input depth map to 3D using the estimated camera pose
T, € SE(3). To avoid P growing unconstrained, a pixel is
not projected to 3D if a previously unoccluded 3D point falls
inside its neighborhood when projected back to 2D. For every
3D point, occlusion is assessed by comparing its projected
depth to its measured depth in the 2D pixel it is projected.
Every 3D segment S = (d,x) has a unique identifier, its
semantics are described by a CLIP feature d € R4, and
stores in a heap ~ the indices of the best keyframes in which
S was seen, ordered by visibility scores.

B. 3D Segment Mapper

For every new keyframe k,, we run an image segmen-
tation model that returns a set of 2D segments S, =
{(s0,1s0) ,(s1,1s1), ...}, each segment being composed of
a mask s and a label [, which is initialized as [, := —1.

Algorithm 1 3D Segment Mapper
1: function 3D_SEGMENT_MAPPER(P, S, kp, Th)

2: Sp, < segment_keyframe(kn,)

3: Pn < project_point_cloud(P, Tr, )

4: for (s,ls) in Sy, do > For every 2D segment in K,
5: mode, v < get_label_mode_and_votes(Py,, s, €)

6: if v > € then > #votes greater than threshold
7 if mode = —1 then

8: Sq+1 + new_3D_segment(q + 1,n, s)

9: S+ SU{Sq+1}
10: ls+—q+1

11: else

12: S < update_3D_segment(S,,ode; 1, S)

13: ls + Z]

14: S mergeﬁnd,pmne,ZDisegnlents(S’n)

15: P < update_pcd_labels(P, Pp, Sn)

16: return P, S, S,

We then select the 3D map points in k,,’s frustum, project
them to k,, and remove occluded points by comparing
their projected depth to the input depth. In this manner,
we obtain the 2D point set P, = {po,p1,...}, for which
p = ([u ’U]T, lp). We compute the label mode of all
points p within a segment s, that we will represent slightly
abusing notation as z; := argmaxy, (73 N s ). If the mode
receives less votes v than a predefined threshold e, we discard
s. If not, two possibilities can occur:

1) If z; = —1, we set z; := g+ 1 and initialize a new
3D segment S,i; with an empty CLIP feature d
(filled later as described in Sec. I1I-D), and a keyframe
heap k:={(n,r)}, initialized with k,’s index and s’
visibility score 7.

Otherwise, 2D segment s is a match for 3D segment
S, and the keyframe will be inserted into x, and stored
if it is one of the best views or if « is not full.

2)

For both, the unassigned 3D points and 2D segment’s labels,
l, and I, are updated to the identifier of the matched S, .
After matching all 2D masks, those that share the same
ls are merged. Finally, once all masks are gathered in Sn.
the tuple (k,,S,) is pushed to the queue Q. Keyframes
and masks remain in Q until processing resources become
available to compute the CLIP descriptors for the highest-



Fig. 3.
recycling symbol; recongize sofas and chairs as places to sit; that you can take a nap in a sofa, pillows and couches are soft objects, and books are readable,
that the clock tells the hour, the blackboard is to draw equations, and the jacket is something to stay warm. Colorbar shows similarity strength.

scoring 2D segments.

C. Loop Closure

When the SLAM module closes a loop or completes a
Global Bundle Adjustment, OVO updates both its map and
the set of 3D instances. We denote both after the update
as M’ and §'. For each updated keyframe T, € T, its
associated local point cloud is also updated by propagating
the pose correction as P, := T/, T, ' P,,. This transforms
the points from the world frame to the original keyframe’s
and back using the updated pose T,. Keyframes that are
removed during SLAM optimization are discarded along
with their associated 3D points. After updating the 3D points,
the temporary queue Q is cleared. Next, the set of 3D in-
stances S’ is pruned by removing instances whose associated
points were entirely deleted during optimization. Following,
instance fusion is performed by comparing remaining pairs
of 3D instances. Two instances are merged if they satisfy
the following criteria: (1) The distance between their point
cloud centroids is < 150cm, (2) the cosine similarity between
their CLIPs is > 0.8, and (3) more than 50% of their points
lie within 10cm of a point in the other instance. For a pair
of segments S; and S; to be merged, their point indices are
unified as k; := x;Uk, and all map points previously labeled
as j are reassigned to i, i.e., VP, € Pllp = j, = I := 1.

D. CLIP Descriptors

When a tuple (kq, Sq) is popped from Q, only the matched
2D segments for which k, is still in the x of their 3D instance
S are selected. A CLIP descriptor d is computed for each
of them as explained in Sec. III-E. Then, the final descriptor
for a 3D segment S is selected between the 2D segments
in its keyframes’ heap «, as the CLIP descriptor with the
smallest aggregated distance to the rest. To query the 3D
semantic representation, text queries are encoded to CLIP
space. Then, we compute the cosine similarity between the
CLIP descriptor of the query and the descriptor d of each
3D segment in S.

Out-of-distribution queries. From left to right, top to bottom, observe how common-language queries allow to differentiate bins based on a

E. CLIP Merging

Similarly to HOV-SG [24], for each 2D segment we
compute three CLIP descriptors: 1) dg for the full keyframe,
2) d; for the segment masking the rest of the image out,
and 3) ds for the minimum bounding box that contains the
segment. In contrast, in our case, the CLIP descriptor d =
Z?:o w; ©d; of a 2D segment is the result of merging the
three descriptors d;—¢o,1,2} using a per-dimension weighted
average with weights w; € R? (® is the Hadamard product).
Our weights w;_(¢ 1 2; are predicted by a neural model, as
shown in Fig. 2. Note that HOV-SG’s merging is done with
hand-crafted scalar weights (i.e., d = Z?:o w;d;, w; € R).

As seen in Fig. 2, the input to our CLIP merging is three
CLIPs d;—0,1,2)- These are first passed by a transformer
encoder, and the output is flattened and fed to a MLP,
predicting the weights, and a softmax, forcing Z?:o w; =
1¢. Our CLIP merging is pre-trained following SigLIP [16].
For a mini-batch B = {(so,¢0),(s1,¢1),...} composed
by pairs of 2D segments s; and semantic classes c;, we
minimize the sigmoid cosine similarity loss

|B| 18]

~ 8 ZZ

=1 j=1

1
<1+exp (zi5(—td; - y; + b))> M

between the merged CLIP descriptor d;, and the CLIP
embedding y; of the semantic class c¢; associated to the 2D
segment s; in the same batch B. z;; is the label for a given
image and class input, which equals 1 if they are paired and
—1 otherwise. b and ¢ are learnable bias and temperature
parameters, used to compensate the imbalance coming from
negative pairs dominating the loss.

IV. EXPERIMENTS

First, we report OVO evaluation on 3D online semantic
mapping on two established datasets, one synthetic (Replica),
and one real (ScanNetv2). Then, we present our CLIP
merging evaluation on semantic classification of images with
ground-truth segmentation masks both on a dataset with mul-
tiple masks per image (ScanNet++) and with a single mask
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Fig. 4. 3D semantic segmentation on Replica. OVO yields more accurate results in comparison to the two best offline baselines.

per image (ImageNet-S), and against alternative methods
integrated into OVO for 3D semantic mapping (Replica).

Implementation. For OVO, we implemented three different
configurations to show its flexibility: (1) OVO-mapping, that
uses ground-truth camera poses, (2) OVO-Gaussian-SLAM,
where we integrate our contributions within Gaussian-
SLAM [36], a SLAM method targeting novel-view synthesis
and dense point cloud reconstruction, although not real-
time, and (3) OVO-ORB-SLAM2 for which we integrate
with ORB-SLAM?2 [37], a real-time feature-based SLAM
system with loop-closure. While OVO-Gaussian-SLAM uses
the center of 3D Gaussians as the dense point cloud P,
for OVO-ORB-SLAM?2 we build a dense point cloud by
registering the local point clouds from the RGB-D images.
All three configurations use SAM?2.1-1 for 2D segmentation
and SigLip ViT-SO400 for CLIP descriptors. Our CLIP
merging has 5 self-attention layers with 8 heads, a 1152
latent dimension, with drop-out of 0.1, and 4 layers MLP
with 3 x 1152 input/output neurons and x4 inverse bottleneck
with Leaky ReLU activations. It was trained with 4 Nvidia
V100 GPUgs, using Pytorch, with AdamW optimizer, learning
rate 1 x 1076, gradient clipping at 1, and batch size of 512
per GPU, for 15 epochs using the top 100 semantic labels
from ScanNet++ 250 training set. To compensate for class
imbalance, in the loss we weight each element of the batch
by the inverse of their class frequency in the training set.

Baselines. We evaluate CLIP merging against baselines that
compute local CLIP descriptors [12, 13, 24] (using all of
them SigLIP-SO400M) and Alpha-CLIP [19], a state-of-
the-art model developed to condition CLIP using masks.
Additionally, we include two variations of our CLIP merging
trained in the same setup, in order to validate its design:
directly predicting the fused descriptor, and predicting only
one weight per descriptor. As detailed in Sec. II, existing
semantic SLAM pipelines do not construct a 3D represen-
tation that can be evaluated using 3D metrics for open-set
classes. Thus, we compare OVO against similar 3D open-

vocabulary online mapping systems, Concept-Graphs [13],
and OpenFusion [14]; and the state-of-the-art 3D open-
vocabulary offline baselines OpenScene [9], OpenNeRF [23],
Open3DIS [11] and HOV-SG [24]. Finally, we evaluate com-
putational cost against Concept-Graphs, OpenFusion, HOV-
SG and OpenNeRF, but exclude Open3DIS and OpenScene,
as they rely on pre-processed 3D geometry and features.

Datasets. ScanNet++ [38] has 250 training and 50 validation
indoor RGB+D scenes sequences. We use 2D rasterized
masks for a total of 1.6M and 400k 2D instance samples
respectively. Semantic classes are mapped into either the set
of 100 most commons (used for training) or the full set of
over 1.6k classes (used for evaluation). ImageNet-S [39] has
a validation set of ~ 12k images with 919 semantic labels.
ScanNetv2 [40] has a full validation set of 312 RGB+D
sequences of real scenes (FVS). We also evaluate on the
5-scene subset used by HOV-SG (HVS). We use the original
annotation set with 20 classes (ScanNet20) and the expanded
set with 200 classes (ScanNet200 [41]). On Replica [42], we
use the standard 8-scene subset (office-0...4, room-0...2) and
its 51 annotated classes.

Metrics. Semantic classification is evaluated using mean
Intersection Over Union (mloU) and mean Accuracy (mAcc)
on ScanNet++, while on ImageNet-S we report the standard
Top-1 and Top-5 mAcc. While we assess CLIP merging
in 2D to isolate other factors, the full OVO is evaluated
in 3D by labeling the vertices of ground-truth meshes and
comparing them against ground-truth 3D labels. For Replica,
following OpenNeRF [23], we report mloU and mAcc, cat-
egorizing labels into tertiles based on their frequency (head,
common, and tail). In ScanNetv2, we further present metrics
weighted by the label frequency in the ground truth (f-mloU
and f-mAcc). Additionally, we analyze our computational
footprint. We measure wall-clock time required to optimize
Replica scenes, as well as mean and max GPU vRAM and
max system RAM usage (in GB). Each table highlights
first , second , and third best results.



TABLE I
3D SEMANTIC SEGMENTATION EVALUATION ON REPLICA 51 CLASSES, SPLITTING BY FREQUENCY TERTILES: HEAD, COMMON AND TAIL.

All Head Common Tail
Geo- Camera pose /
Method Online metry ATE RMSE [cm] | mloU mAcc mloU mAcc mloU mAcc mloU mAcc
OpenScene [9] (Distilled) X GT GT 14.8 23.0 30.2 41.1 12.8 21.3 1.4 6.7
OpenScene [9] (Ensemble) X GT GT 159 24.6 31.7 44.8 14.5 22.6 1.5 6.3
OpenNeRF [23] X Est. GT 20.4 31.7 354 46.2 20.1 31.3 5.8 17.6
HOV-SG [24] X Est. GT 22.5 34.2 35.9 44.2 23.6 423 8.0 16.1
Open3DIS [11] (SigLip) X GT GT 25.6 38.7 49.7 64.4 22.1 42.4 4.9 9.4
Concept-Graphs [13] v Est. GT 16.7 33.7 27.3 39.1 15.1 354 4.4 26.8
Open-Fusion [14] v Est. GT 20.5 34.8 37.9 51.7 14.0 30.3 9.8 222
OVO-mapping (ours) v Est. GT 27.0 39.1 45.0 59.9 25.1 38.5 11.0 18.8
OVO-Gaussian-SLAM (ours) v Est. 0.6 271 38.6 44.1 58.0 25.0 39.0 12.1 18.9
OVO-ORB-SLAM2 (ours) v Est. 1.9 25.6 39.0 43.0 59.1 21.6 38.3 12.1 19.6
TABLE III

3D SEMANTIC SEGMENTATION ON SCANNETV2 WITH FREQUENCY WEIGHTED METRICS ON 5 (HVS) AND ALL 312 VAL. SCENES (FVS).

Geo- Camera pose / ScanNet20 ScanNet200
Method Online metry ATE RMSE [cm] mloU mAcc f-mloU f-mAcc mloU mAcc f-mloU f-mAcc
Open3DIS [11] (SigLip) X GT GT 373 528 57.0 67.9 17.8 237 27.9 34.1
OpenScene(Ensemble) [9] X GT GT 44.6 619 57.6 71.0 9.4 12.6 27.8 32.0
HOV-SG [24] X Est. GT 344 511 47.3 61.8 112 187 27.7 37.6
Concept-Graphs [13] v Est. GT 171 291 26.0 33.1 6.0 11.7 21.4 27.7
‘; Open-Fusion [14] v Est. GT 30.1 39.9 54.1 68.1 8.6 12.8 38.4 479
T~ OVO-mapping (ours) v Est. GT | 381 505  57.6 70.5 172 253 454 56.4
OVO-Gaussian-SLAM (ours) v Est. 23.7 293 41.1 43.0 59.5 11.8  18.8 30.1 42.6
OVO-ORB-SLAM2 (ours) v Est. 21.5 31.3 452 45.8 61.2 13.6 222 38.2 51.0
OVO-ORB-SLAM2 w/o loop clos. v Est. 30.2 23.6 345 41.4 56.9 103 17.3 33.2 46.0
w Open3DIS [11] (SigLip) X GT GT 247 409 32.5 45.3 94 17.0 22.9 32.2
g, _OpenScene(Ensemble) [9] _ _ _ _|_ X _G6r ___G6r_ _ _ |40 703 577 698 116 228 245 292
OVO-mapping (ours) v Est. GT 373 589 55.13 69.4 174 359 44.3 57.8

A. 3D Semantic Segmentation

Replica. Tab. II presents segmentation results for all our
OVO configurations alongside relevant baselines. OVO
outperforms all baselines in the aggregated mloU and
mAcc (‘All’ column). OVO-Gaussian-SLAM and OVO-
ORB-SLAM? surpass both offline and online mapping algo-
rithms. This is particularly noteworthy since both implemen-
tations estimate camera poses and scene geometry, whereas
all baselines (indicated in the table) rely either on ground-
truth geometry, camera pose, or both. Thanks to the strong
generalization of our CLIP merging, all OVO implemen-
tations have a significantly better mloU on tail categories,
which demonstrates less false-positives. As shown in Fig. 4,
OVO effectively segments and classifies 3D instances, such
as chairs and tables, that other baselines often misclassify
due to the excessive context information incorporated into
CLIP descriptors. OVO even outperforms the ground truth
in some instances. For example, in “office4” (top left of
Fig. 4), the ground-truth label for the table is missing, and
one chair is misclassified as the floor. This underscores the
advantage of open-set pipelines, particularly in situations
where previous SLAM algorithms, which rely on known 2D
semantics [7, 30], would fail.

ScanNetv2. Results, summarized in Tab. III, show how
OVO-mapping matches HOV-SG, and even Open3DIS in
the set ScanNet20. On the harder set ScanNet200, OVO-

mapping has a similar performance to Open3DIS in mloU,
although it is significantly better in terms of f-mloU and
f-mAcc. OpenScene does achieve the best performance on
ScanNet20. Nevertheless, its significant drop when using the
extended set of classes highlights a weaker generalization
capabilities than OVO and other baselines.

SLAM comparison. The difference between OVO’s two
SLAM versions and OVO-mapping is bigger in ScanNetv2
than in Replica (compare Tab. II and Tab. III), due to image
blur and noisy depths in ScanNetv2. Gaussian-SLAM bene-
fits from a more complex strategy for densification and prun-
ing of the 3D point cloud, outperforming our simpler depth
unprojection in Replica. However, while its camera tracking
works flawlessly there, it does struggle in ScanNetv2 noisier
images, where loop-closure plays a key role. Comparing
OVO-ORB-SLAM?2 w/o and w/ loop-closure, Tab. III, shows
the importance of this feature. Further, Fig. 5 illustrates the
loop closure correction over inconsistent reconstructions with
repeated semantic instances, caused by odometric drift.

Computational footprint. Despite OpenFusion being 2Xx
faster than OVO, thanks to using SEEM instead of
SAM+SigLIP, OVO achieves a better balance between speed
and performance. It is still 2.5x faster than Concept-Graphs,
3x faster than OpenNerf and 80x faster than HOV-SG, as
shown in Tab. I'V. In contrast with HOV-SG, that relies on an
expensive hierarchical merging of segments, requiring almost



Before loop—glosure

Fig. 5. Visualization of OVO-ORB-SLAM2 loop closure on
“scene(0011_00” (ScanNet). We highlight four instances split due to tracking
drift and effectively merged after loop-closure by our semantic fusion.

TABLE IV
RUNTIME STATISTICS ON REPLICA WITH 2K FRAMES PER SCENE.

VvRAM RAM Time
Method Avg / Max Max Avg
HOV-SG [24] 6/12 GB 139 GB ~11h
OpenNeRF [23] 4/22 GB 44 GB ~20m

" “Open-Fusion[14]" =~ 3/ 4GB 6GB  ~3m
CG [13] 7/11 GB 16 GB ~16m
OVO-mapping (ours) 4/ 8 GB 12 GB ~6m

x10 more RAM, OVO shows a lower RAM and GPU
vRAM usage that enables its use on consumer devices. OVO-
ORB-SLAM? takes on average 0.67 seconds per keyframe
on Replica and ScanNetv2, spiking up to 1.4 seconds for the
slowest frame, and up to up to 2.5 and 6.1 seconds after loop
closure on “scene0011_00” and “scene0231_00" respectively.
This is compatible in our experiments with a conservative
keyframe creation policy of 1 keyframe every 10 frames.
Therefore, it is compatible with real-time SLAM pipelines,
in which the critical camera tracking runs at video rate while
the mapping runs at lower frequencies.

B. CLIP Merging

In Tab. V, we report evaluation on ImageNet-S, includ-
ing also Alpha-CLIP, and on which both HOV-SG’s and
Concept-Fusion’s merging approaches are equivalent to just
computing the global descriptor due to there being only one
mask per image. Tab. VI presents 2D semantic classification
results on unseen scenes from ScanNet++, using the ex-
panded label set of 1.6k, of our CLIP merging vs. HOV-SG’s
and Concept Fusion’s (CF) CLIP merging, and the simpler
mask crop used by Concept-Graphs.

Overall, ours outperforms baselines, particularly in

TABLE V
IMAGENET-S SEMANTIC CLASSIFICATION ACCURACY.

Method Top-1 mAcc Top-5 mAcc

Alpha-Clip (ViT-L/14@336)[19] 77.6 94.1

SigLIP-SO400M[16] 82.5 95.7

Mask crop 80.3 93.4

Our CLIP merging 84.8 96.6
TABLE VI

2D OPEN VOCABULARY SEMANTIC CLASSIFICATION ON SCANNET++.

Method mloU  mAcc  f-mloU  f-mAcc
Concept-Fusion[12] 8.6 17.0 10.0 12.8
Mask crop 8.5 17.0 10.0 12.8
HOV-SG merging[24] 9.4 15.9 12.8 15.9
Our CLIP merging 9.5 143 36.9 494
CLIP merging variations

- fused 6.2 11.6 40.0 56.7
- per-descriptor 9.0 15.6 12.7 15.9

TABLE VII

3D OPEN-VOCABULARY SEMANTIC METRICS ON REPLICA OF
OVO-MAPPING WITH ALTERNATIVE CLIP MERGING.

All Seen Unseen
mloU mAcc mloU mAcc mloU mAcc
w/ HOV-SG’s fusion 20.3 38.1 223 451 183 30.9
w/ our CLIP merging 27.0 391 36.7 547 169 228
w/ CLIP merging variations
- fused 20.2 332 322 525 0.8 1.2

- per-descriptor 202 382 266 486 13.6 274

frequency-weighted metrics, although with slightly worse
mAcc in ScanNet++. Alpha-CLIP performs worse than sim-
pler approaches like our CLIP merging. Using a better
backbone (SigLIP-SO400M vs ViT-L/14) outperforms a sig-
nificantly more expensive fine-tuning (our trained two day
on 4 V100 vs their on 128 A100 GPUs).

Regarding alternatives, the per-descriptor weights predic-
tor achieves a similar performance to HOV-SG, while di-
rectly predicting a fused descriptor achieves better frequency-
weighted metrics but significantly worse overall ones, which
indicates overfitting. This is further validated evaluating
OVO-mapping in Replica, Tab. VII using HOV-SG’s merging
approach, and the alternatives to our CLIP merging. The
fused predictor performance collapses in classes not seen
during training, while our proposed CLIP merging has a
slightly worse performance than HOV-SG’s, while being
significantly better on the known classes. The per-CLIP
weights is unable to match the performance, highlighting the
impact of per-dimension weights.

Finally, we highlight in Fig. 3 how our CLIP merging
preserves their rich semantic encoding, allowing our merged
CLIPs to generalize to zero-shot complex language queries.
For instance, our descriptors distinguish between two trash
bins based on a recycling symbol on one of them, despite
both being labeled just as bin in the ground truth.



C. Limitations

Despite OVO state-of-the-art results on 3D indoor seman-
tic segmentation, generalization to outdoor large-scale scenes
may face challenges such as different class distributions, illu-
mination and blur, and higher tracking errors. Our semantic
fusion at loop closure effectively corrects odometric drift.
However, it sometimes misses instances that should be fused,
something that may be fixed by a richer and more accurately
localized set of features. We also observed in CLIP merging
a slight bias towards classes seen at training, which may be
solved with larger training sets.

V. CONCLUSIONS

In this paper, we present OVO, an open-vocabulary, online
3D mapping method. Our pipeline extracts 3D segments from
2D masks and tracks them across keyframes. To assign CLIP
descriptors to 3D segments, we introduce a novel strategy:
each 2D segment receives a single descriptor computed
as a weighted sum of embeddings from the full image,
the masked region, and its surrounding bounding box. The
weights are predicted by a neural network, which outper-
forms handcrafted heuristics while retaining strong gener-
alization. We also develop a mechanism to fuse instances
that are affected by odometric drift after the geometric
corrections of a loop closure. OVO outperforms existing
baselines in both computational efficiency and segmentation
quality across multiple datasets. By bridging SLAM with
open-vocabulary representations, we believe that our work
broadens the scope of applications in these two domains.
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APPENDIX
A. Datasets

ScanNet++ contains 1752 x 1168 RGB-D images of real
indoor scenes with ground-truth 3D meshes and instance
and semantic annotations. For training, we use the top 100
semantic labels from the more than 1.6K annotated semantic
classes, and evaluate on the whole set of 1.6K labels. Its
training set has 230 scenes and its validation set has 50
scenes. Each scene has a training camera trajectory and an
independent validation one.

ScanNetv2 also images real indoor scenes at RGB resolution
of 1296 x 968 and depth resolution of 640 x 480. It also
has ground-truth 3D meshes with ground-truth instance and
semantic annotations. ScanNetv2 has two sets of annotations,
the original set with 20 classes (ScanNet20), and an ex-
panded set with 200 classes (ScanNet200) [41]. We evaluate
on the 5 scenes subset used by HOV-SG [24] (HVS), and on
the whole validation set of 312 scenes (FVS). Despite some
overlap in physical scenes, ScanNet and ScanNet++ were
captured years apart, with different trajectories and sensors,
making images and reconstructions significantly different.
Image blur and noisy depths make ScanNet more challenging
than ScanNet++.

Replica is a synthetic dataset generated from high-fidelity
real-world data. Scenes consist of ground-truth 3D meshes
with semantic annotations. For all scenes, RGB-D sequences
have been rendered at 1200 x 680. For Replica we use the
common 8 scenes subset (office-0...4, room-0...2) with NICE-
SLAM camera trajectories [43].

B. Implementation

Our CLIP merging has a 5-layer transformer encoder with
8 heads and a 4-layer MLP. It was trained on ScanNet++ train
set for 15 epochs, with batch size 512, on 4 V100 GPUs.
As pre-processing, we computed segmentation masks on
images, matched these with their ground-truth 2D semantic
labels, and pre-computed input and target CLIP embeddings
to speed up the training process.
Regarding OVO, we use the pixel size of segmented 2D
masks as metric of viewpoints quality, and show results
selecting the final descriptor between the 10 best keyframes
of each 3D segment. Except when stated otherwise, we relied
on SAM2.1-1 for 2D instance segmentation, and SigLip ViT-
S0400 for CLIP descriptors. We query the models with the
set of classes of each dataset using the template “This is
a photo of a {class}”. For fairness in OVO evaluation, we
reproduce previous approaches’ [9, 10, 23, 24] keyframes
selection and querying. We select as keyframes 1 every 10
frames. The representation is queried with each dataset’s
semantic classes, and each 3D segment is matched to the
class with higher similarity. Following HOV-SG, the vertices
of our estimated point cloud are matched to the vertices of
ground-truth meshes using KD-tree search with 5 neighbors.
Profiling experiments were run on Ubuntu 20, with an i7-
11700K CPU, an RTX-3090 GPU, 64 GB of RAM and 150
GB of swap.

Due to slight differences in metrics computation, we re-
produced HOV-SG and Open3DIS in both Replica and
ScanNetv2. For a fairer comparison with Open-3DIS we
implemented it with SigLIP ViT-SO400M rather than its
base CLIP ViT-L/14. We where unable to make OpenNerf
converge in ScanNetv2, probably due to the impact of its
noisy GT camera poses in NeRFs convergence. We report
OpenNeRF official metrics on Replica. In this section we
report minor ablations and experiments performed during
OVO'’s development using ScanNet++ training set. First we
report an ablation of different foundation models for 2D
instance segmentation, and language-image features extrac-
tion. Then, we ablate the algorithm to merge different CLIP
descriptors and validate our proposed CLIP merging. We
profit from the CLIP merging to reduce the number of
CLIPs descriptors computations and evaluate the impact of
the number of views on the selection of the final descriptor of
3D instances. After that, we present a mask bleeding problem
that arises from depth estimation inaccuracies, and how we
tackled it. Finally, we report an overall profiling of the system
using different previously ablated components.

While the segmentation backbones where ablated on a single
scene from ScanNet++, we used an extended set of five
scenes for CLIP [8] models and similarity computation, to
ablate the set of fixed weights, the evaluation of the number
of viewpoints, and the mask bleeding. Then we used a
different set of 10 scenes for the overall profiling to avoid
overfitting on the previous set. Regarding CLIP merging
training was done using the 230 scenes from ScanNet++
training set, and validation against baselines was performed
on ScanNet++ 50 scenes validation set, and on ADE20K-
150. We measured mean Intersection over Union (mlIoU) of
the 3D semantic segmentation.

As starting point, segmentation masks are computed using
SAM 2 [44]; CLIP vectors are computed from masks using
SigLIP-384; for each mask three vectors are computed and
weighted together as introduced by HOV-SG [24]; each 3D
object gets assigned the CLIP vector from the view that
minimizes the L1 distance to its other views. Finally semantic
classes are matched to each 3D object using the similarity
approach presented by LangSplat [45].

C. Foundation Models

a) SAM: Since its release, Segment Anything Model
(SAM) [44] has been the state-of-the art for out-of-the
box instance segmentation on different fields. Its segment-
everything mode extracts multiple masks from a single
image, taking an input a grid of point on the image. Neverthe-
less, this mode has a low throughput mainly due to the post-
processing required to filter duplicated and bad segmentation
masks. Although several methods claim up to x100 speed-
ups with respect to SAM, these speed-ups are measured when
segmenting a single object on the image, and do not measure
the segment-everything mode and its post-processing.

In this ablation the evaluated models are SAM [44], SAM
2 [15], FastSAM [46], and EfficientViTSAM [47]. The eval-
uation in Tab. VIII shows how when segmenting everything
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these methods do not imply an improvement against a SAM
implementation with tuned hyper-parameters.

TABLE VIII
SEGMENTATION BACKBONE ABLATION.

281bc17764
SAM backbone mloUt Latency [s]{
FastSAM [46] 5.0 0.40 + 0.27
EfficientViTSAM [47] 17.1 4.19+£0.85
EfficientVITSAM [47] - tuned 15.1 0.68 £+ 0.05
SAM [44] 19.0 5.43 +1.83
SAM [44] - tuned 18.1 0.84 +0.13
SAM 2 [15] - tuned 19.1 0.714+0.10

TABLE IX
CLIP ABLATION RESULTS ON 5 SCENES FROM SCANNET++.

Architecture Resolution mloU [%] Latency [s]

DFN-ViT-B-16 1092 0.100 + 0.022
DFN-ViT-L/14 11.89 0.173 £ 0.031
DFN-ViT-H/14 224 x 224 1322 0.286 + 0.054
OpenCLIP ViT-H/14 12.71 0.283 £ 0.053
SigLIP-SO400M 13.78 0.229 + 0.026
SigLIP-SO400M 384 384 % 384 15.35 0.442 £ 0.080
DFN-ViT-H/14-378 12.96 0.664 + 0.136

b) Visual-Language descriptors.: To compute image-
language features we rely on the family of CLIP and its
variants. To select the CLIP architecture we evaluate the
difference in performance and latency of different SOTA
models to compute CLIP embeddings:

e OpenCLIP [48] base ViT-H-14, trained on LAION-2B
English [49] at a resolution of 224 x 224, using CLIP’s
cosine similarity.

e« DFN [50] ViT-B-16, ViT-L-14, and ViT-H-14 trained on
the dataset DFN-5b [50] with input images of 224 x 224,
and a ViT-H-14 finetuned at resolution 384 x 384, using
CLIP’s cosine similarity.
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Grid search for CLIP weights merging on five scenes from ScanNet++ [38].

o two SigLIP’s Shape-Optimized 400M parameter ViT
(ViT SO-400M), trained on WebLI English dataset at
224 x 224, with one fine-tuned at 384 x 384, and
optimized using SigL.IP’s cosine similarity.
In this ablation each backbone is evaluated using the simi-
larity with which they were trained, without ensembling, and
using the template “This is a photo of a {class}”. The results
in Tab. IX show a clear trade-off between segmentation
performance, and model latency. SigLIP-384 achieves the
best mloU, while SigLIP at 224 x 224 has the best balance
between mloU and speed. Overall, this ablation shows the
importance of selecting the proper CLIP backbone, with a
difference of almost 5% between the best and the worst
model.

D. CLIP descriptors merging

a) Similarity computation.: Initially, CLIP [8] pre-
sented the cosine similarity, cos (¢qry, Pime) to compute
the distance between the text, ¢gy, and image, Pimg, em-
beddings. SigLIP [16] adapted it to its loss function, as
Sigmoid (cos (¢qry, Pimg) X T + b), including a Sigmoid op-
eration, and the learned inverse temperature, ¢ = % and
bias b parameters. To classify, both approaches assigned
to an image the class of the query that generated the
highest similarity. Also based on CLIP’s experiments, to
compute the cosine similarity HOV-SG [24] computed query
embeddings as ¢qy = w, where ¢.; is the text
embedding computed from the class name, and ¢emp iS
the text embedding computed from the phrase resulting of
inserting the class into the template “There is {class} in
the scene”. In contrast, LERF [51] proposed to compute the
cosine similarity between the image and text embeddings as

min exp ( COs (d)qrya d)img) )
i exp (cos (¢qrya ¢img) ) + exp (cos (Plons ¢img) )

where ¢?, is the text embedding of one of the predefined
canonical queries object, things, stuff, texture.

Using the SigLIP ViT-SO400M model to compute CLIP
vectors, we compare between:

(@)
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Fig. 7. Evaluation using only top views to compute CLIP on 5 scenes from ScanNet++ [38]. While using more than one view has substantial impact
on the runtime, it also improves segmentation accuracy. However, too many views also degrade the segmentation accuracy.

TABLE X
SIMILARITY COMPUTATION ABLATION ON 5 SCENES FROM SCANNET++
MEASURING SEMANTIC 3D MIoU.

Cosine similarity
14.75%
15.35%

LERF’s similarity
14.75%
14.98 %

w ensemble
w\o ensemble

e computing query embeddings, ¢gr, only with the tem-
plate “This is a photo of a {class}” or as an ensemble
averaging the template embedding with the class em-
bedding;

e and computing SigLIP’s cosine similarity or LERF’s
cosine similarity.

Results in Tab. X show how the basic configuration of
using SigLIP similarity without ensemble achieves the best
performance. From here on, all experiments will proceed
using basic cosine similarity without ensemble. To focus
CLIP descriptors to elements in an image, we follow HOV-
SG’s [24] approach. For each mask segmented by SAM,
HOV-SG proposed to compute CLIP embeddings combining
the information of the complete image, the masked image
without background, and a bounding box of the mask
including background. For each segmentation mask ¢, its
corresponding CLIP vector F; is computed as

3)

F; = Fglobal X Wglobal + Fiocali X (1 - wglobal)a
with
“4)

combinig the CLIP vector of the whole image, Fgiopals
the CLIP vector of only the segmentation mask without
background, Finasked;» and the one of the bounding box of

the segmentation mask including background, Fipox, -
HOV-SG [24] used

Fiocali == Fmasked,; X Wmasked T beoxi X (1 - wmasked)a

S

Welobal = Softmax(cos(Fyiobal; F5))s

and Wmpaskea = 0.4418. Nevertheless, the use of the Softmax
introduced a dependency between the different embeddings
extracted on the same frame. To avoid computing all CLIP
embeddings on every frame, we remove the Softmax and
perform a grid search of Wmaskea and Wgiobal. The best perfor-
mance is achieved for wgighar = 0.45 and Wiaskeq = 0.0975
as shown in Fig. 6.

b) CLIP merging: Rather than relying on 3 fixed-
weights that ideally should be tunned for each scene, we
developed the CLIP merging to estimate the corresponding
weight for each image. After training on ScanNet++ train set
with the top 100 semantic labels, we evaluate its performance
on the ScanNet++ validation set using the total set of 1.6k
queries, both including (w.top 100) and excluding (w/o. top
100) classes seen during training. For a stronger distribution
switch, we also evaluate on ADE20k-150.

Comparing its performance against HOV-SG’s approach and
our variation of HOV-SG’s using three fixed weights, the
CLIP merging outperforms the baselines using all the labels,
Tab. XI. Excluding from the metrics the 100 labels seen
during training, we can observe how the CLIP merging
performance drops with respect to the baselines. Despite the
slight bias toward classes at training, it still outperform on
freq. weighted metrics of classes that weren’t seen during
training, and on novel data on the ADE20k-150 dataset.
Although, OVO-mapping evaluation in Replica and Scan-
Netv2, additional segmentation metrics on classes outside
the training set (Tab. XIII showcase how the bias does not
have an impact on our CLIP merging’s generalization. Our
method accurately detects in 3D several unseen classes across
Replica and ScanNetv2, including guitar, coffee maker,
blackboard, and scale. The mloU for these examples exceeds
60%. From here on, all experiments will proceed using
the CLIP merging.



TABLE XI
OUR CLIP MERGING VS. BASELINES ON: SCANNET++ (S++) USING 1.6K QUERIES (METRICS ON OBSERVED 495 LABELS, W. AND W/O. THE TOP 100
USED AT TRAINING), AND ADE20K WITH 150 LABELS. COLOR INDICATES FIRST , SECOND , AND THIRD BEST.

S++ w. top 100

S++ w/o. top100 ADE20k-150

Method mloU mAcc f-mloU f-mAcc mloU mAcc f-mloU f-mAcc mloU mAcc f-mloU f-mAcc

HOV-SG 94 15.9 12.8 15.9 8.3 15.1 8.4 13.6 21.9 53.7 22.3 34.9

Fixed-weights 9.4 159 13.1 16.3 8.3 15.1 8.4 13.8 224 53.9 23.1 35.5

CLIP-merger 10.7 16.9 36.1 45.3 7.3 12.8 9.9 15.0 23.4 49.3 28.7 41.2
TABLE XII

AVERAGE RUNTIMES AND 3D SEMANTIC PERFORMANCE ON SCANNET++. WE MEASURE THE SEGMENTATION (SEG); SEGMENTS MATCHING AND
TRACKING (M&T); SEGMENTS PRE PROCESSING (PP); CLIPS COMPUTATION (CLIP); AND TOTAL SECONDS PER KEY FRAME (S/KF)

CLIP SAM  # best views | Seg.[s] M&T|[s] PP[s] CLIP[s] , s/KF ;| mloU mAcc f-mloU f-mAcc
ViT-H/14 1-H 10 1.516 0.269 0.085 0.175 2.112 13.3 22.4 20.2 31.7
2.1-L 0.338 0.252 0.066 0.135 0.865 14.1 24.9 27.3 37.7
2.1-t 10 0.245 0.247 0.057 0.204 0.820 11.8 25.7 342 46.6
SigLIP 21L 0.339 0.253 0.065 0.233 0.957 14.2 27.0 34.3 45.6
T all 0.337 0.261 0.110 0.367 1.167 15.8 29.6 36.3 48.6
TABLE XIII

CLIP MERGING GENERALIZATION. 3D METRICS ON SCANNETV2 OF
SOME CLASSES NOT SEEN DURING TRAINING.

scale 3T plackboard coffee guitar projector

oven maker screen

mloU% 75.1 78.53 61.4 67.0 62.68 64.1
mAcc% 81.2 94.07 76.1 86.7 86.79  86.8

E. Additional heuristics

a) N° of best views.: To reduce the expensive CLIP

computation for each frame, we evaluate the impact of using
only the best views where each 3D segment has been seen
to compute its CLIP descriptor. We evaluate from using only
the best image to using all the images where the object has
been seen. The quality of an image is based on the area of
the object’s 2D segmentation in it.
For a sequence of 51 keyframes, we evaluate for & €
{1,...,51}, being all using all the views to compute objects
3D vectors. The results show, see Fig. 7, that neither using
only the best nor using all the views are robust enough to
noise. For the set of 5 scenes on this experiment, the best
values of k are between 2 and 7, achieving an mloU around
18%, almost 3 points better than using all observations,
although, the perfect value of will probably be scene and
object dependent. We decide to set use 10 views as a balance
to avoid useless computation of CLIP vectors and being
resistant to noisy images.

b) Masks bleeding.: Observing OVO-SLAM matching
results, we noticed some problems related with SAM’s
masks. When some 3D points are projected on the edges
of a 2D mask to which they do not belong, they are wrongly
clustered into it and matched to a 3D instance. Then, when
these are seen again they will propagate the wrongly assigned
ID. This phenomenon can be observed in particular on
the edges of objects, where the depth and masks are less

accurate, and masks propagate the ID of the object to the
background, as seen in Fig. 8. To compensate it we developed
two approaches:

« First, we add a filter to only keep matches of 3D points
that are assigned to the same object in two consecutive
frames;

o Second, we apply a low-pass filter to the depth map
to mask the edges of the objects and avoid matching
points around them.

Results on Tab. XIV show how while using the depth filter
does improve the average mloU, the limitation to match in
consecutive frames does not. As a consequence we keep only
the depth filter although it does not completely solve the
problem.

TABLE XIV
MASK BLEEDING SOLUTIONS’ ABLATION ON 5 SCENES FROM
SCANNET++ [38].

Config mloUt
Base 15.80%
w depth filter 16.16%
w consecutive KF filter 15.07%
w both 15.82%

c) Overall profiling.: Finally, we quantify the latency-
quality trade-off in our architecture evaluating selected foun-
dation models and number of views against less powerful
alternatives. This evaluation is performed on a different set
of 10 scenes from ScanNet++ to avoid over-fitting to the pre-
vious 5 scenes. For 2D segmentation we evaluate SAM [44]
with ViT-H/14 encoder (1-H), and SAM 2.1 [15] with Hiera
large (2.1-L) and Hiera tiny (2.1-t) image encoders. For
CLIP extraction, we evaluate DFN ViT-H/14-378 [50] and
SigLIP-SO400 [16] both with input images of 384 pixels.
The results in Tab. XII show that in this set of scenes the
best 3D segmentation is achieved with the largest models



using all points of view. Nevertheless, the best trade-off can
be achieved reducing the number of views and the CLIP
model.

Fig. 8. Mask bleeding and propagation produced by masks inaccuracy.
The edges of the chair (pink) bleed to the background at k,, and therefore
the segment label is wrongly propagated to the it in the following keyframes.
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